Undecidability in Function Fields of Positive Characteristic

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Undecidability in Function Fields of Positive Characteristic

We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.

متن کامل

Undecidability in Function Fields of Positive Characteristic

We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.

متن کامل

First-order Undecidability in Function Fields of Positive Characteristic

We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2.

متن کامل

Diophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic

Let K be a one-variable function field over a field of constants of characteristic 0. Let R be a holomorphy subring of K, not equal to K. We prove the following undecidability results for R: If K is recursive, then Hilbert’s Tenth Problem is undecidable in R. In general, there exist x1, . . . , xn ∈ R such that there is no algorithm to tell whether a polynomial equation with coefficients in Q(x...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2009

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnp079