Undecidability in Function Fields of Positive Characteristic
نویسندگان
چکیده
منابع مشابه
Undecidability in Function Fields of Positive Characteristic
We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.
متن کاملUndecidability in Function Fields of Positive Characteristic
We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable in the language of rings without parameters. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2. The proof uses a result by Moret-Bailly about ranks of elliptic curves over function fields.
متن کاملFirst-order Undecidability in Function Fields of Positive Characteristic
We prove that the first-order theory of any function field K of characteristic p > 2 is undecidable. When K is a function field in one variable whose constant field is algebraic over a finite field, we can also prove undecidability in characteristic 2.
متن کاملDiophantine Undecidability of Holomorphy Rings of Function Fields of Characteristic
Let K be a one-variable function field over a field of constants of characteristic 0. Let R be a holomorphy subring of K, not equal to K. We prove the following undecidability results for R: If K is recursive, then Hilbert’s Tenth Problem is undecidable in R. In general, there exist x1, . . . , xn ∈ R such that there is no algorithm to tell whether a polynomial equation with coefficients in Q(x...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2009
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnp079